V.J. Rico, J.L. Hueso, J. Cotrino, A.R. González-Elipe
Journal of Physical Chemistry A, 114 (2010) 4009-4016
doi: 10.1021/jp100346q
Carbon dioxide reforming of methane and direct decomposition of methanol have been investigated using dielectric barrier discharges (DBD) at atmospheric pressure and reduced working temperatures. Two different plasma reactor configurations are compared and special attention is paid to the influence of the surface roughness of the electrodes on the conversion yields in the first plasma device. The influence of different filling gap dielectric materials (i.e., Al(2)O(3) or BaTiO(3)) in the second packed configuration has been also evaluated. Depending on the experimental conditions of applied voltage, residence time of reactants, feed ratios, or reactor configuration, different conversion yields are achieved ranging from 20 to 80% in the case of methane and 7-45% for the carbon dioxide. The direct decomposition of methanol reaches 60-100% under similar experimental conditions. Interestingly, the selectivity toward the production of hydrogen and carbon monoxide is kept almost constant under all the experimental conditions, and the formation of longer hydrocarbon chains or coke as a byproduct is not detected. The maximum efficiency yields are observed for the packed-bed reactor configuration containing alumina for both reaction processes (approximately 1 mol H(2) per kilowatt hour for dry reforming of methane and approximately 4.5 mol H(2) per kilowatt hour for direct decomposition of methanol).