Estudio de la generación de hidrógeno en fluidos caloportadoresFinancial source: Abengoa PI: Agustín R González-Elipe (2009/2010) |
Estudio sobre materiales y su aplicación en sistemas modulares de alta concentración fotovoltaica (CPK)Financial Source: Abengoa Solar PI: Agustín R González-Elipe (2008/2010) |
Estudio de viabilidad de procesos para la obtención de oxígeno a partir de rocas lunaresFinancial source: SOLUCAR PI: A R González-Elipe (Nov-2006/Jun-2007) |
Estudio de Nanotecnologías en aplicaciones solares fotovoltaicasFinancial source: SOLUCAR PI: Agustín R. González-Elipe (May-2007/May-2009) |
Investigación y desarrollo de aplicaciones nanotecnológicas en aglomerados de piedraFinancial Source: COSENTINO PI: Francisco Yubero (Apr-2007/Jun-2009) |
Metalización Decorativa y FuncionalFinancial source: VALEO PI: Juan Pedro Espinós (may-2007/jul-2008) |
Desarrollo de sistemas electrónicos de olfato para la evaluación de la calidad del aceite de olivaFinancial source: SOS-Cuétara PI: José Cotrino (Jul-2007/Dec-2007) |
Recubrimientos tecnológicos con aplicaciones decorativas (ART-DECO)Financial source: Proyecto CENIT PI: Agustín R González-Elipe (2007/2010) |
Financial source: Junta de Andalucía Code: P07-FQM-03298 (Proyecto de Excelencia) |
Research head: Period: Research group: |
The project PlasNitro discusses the characterization of nitrogen plasmas in various technological related applications with techniques of deposition and functionalization of materials, reforming and processes of sterilization. Different procedures to measure properties of plasmas will go down to point, plasma that can be used in doping, deposition, functionalization and modification of materials and that contain nitrogen. In all cases by using techniques of diagnosis based in the detection of nitrogen species. Nitrogen is a usual component nowadays, only or in mixtures with other gases, in a lot of processes used in technology of plasma. Its experimental characterization and/or the modeling will allow getting fundamental properties from plasma (electron density, electron temperature, temperature of the gas, reactive species, etc.) and knowing the contribution to the homogenous (in phase plasma) and heterogeneous (in the surface-material interaction) reactions of the appropriate components of nitrogen. Numerical codes to get out the electron energy distribution function in plasma will become elaborate in the project. To this end the evaluation of the vibrational distribution of nitrogen will be necessary previously. This step implies taking into account multiple vibrational-vibrational processes, vibrational-translactional and vibrational-rotational processes. In the project we will be able to obtain models of fluid of the nitrogen plasma with the contributions of the most important species of the plasma. The theoretical calculations will be complemented with experimental measurements using electrostatic Langmuir’s probe, this will allow measuring the electron energy distribution function, as well as density and temperature of the electrons. The partial nitrogen pressure in each application and the plasma’s neutral components will be controlled by means of an analysis of residual gases. The kinetic modeling of the nitrogen plasma will enable the interpretation of measurements in the plasma out of the thermodynamic equilibrium and by using the Monte Carlo technique of simulation that enable the control of deposition/modification and the nano/microstructure of the materials. We will have, in this way, techniques that they will enable to control themselves and improving the procedures of work and the properties desired in the materials.
Surface functionalisation of materials for high added value applications (FUNCOAT) PI: Agustín R. González-Elipe (Dec-2008/Dec-2013) |
Read more …
FUNCOAT is an integrated project within the application call CONSOLIDER-INGENIO 2010 aiming at the exploitation of synergies existing in the Spanish scientific community, with the general objective of developing principles, processes and devices related to the surface functionalisation of materials. The project integrates 14 well-accredited research centres covering from fundamental and theoretical aspects to final applications. This large effort of integration is critical to achieve substantial advances in this broad field, which go beyond the mere accumulation of results. The research teams belong to different institutions: University, CSIC (responsible for the management of the project) and Technological centres. They maintain scientific relationships among them that extend over the last 15 years. Specific scientific and technological objectives are: understanding of fundamental phenomena driving the modification of surfaces and interfaces, control of the micro- and nano- structure of surfaces and thin films, optimization of thin film deposition methods, process development of multifunctional surfaces for novel applications (mechanical and metallurgical, optical, magnetic, energy, biomaterials, etc) and, finally, the production of new devices based on functionalised surfaces. Other important objectives include the technological transfer of the scientific results to the productive sectors as well as the education and training of scientists, young researchers and engineers. Strategic sectors of our modern society where the activities of FUNCOAT find a direct impact are material processing, energy, environment, health care, agriculture, etc. In order to accomplish an efficient coordination of efforts and the integration of the activities of all the groups, the project is structured around six workpackages: A) Fundamental phenomena in surfaces, interfaces and thin films, B) New processes for the control of the micro- and nano- structure of films and surfaces, C) Mechanical and metallurgical coatings for surface protection, D) Chemical functionalisation and biomedical applications, E) Coatings for optical control, photonic applications and solar energy collection and F) Novel magnetic phenomena in surfaces/interfaces.
Financial source: Ministerio de Ciencia e Innovación Code: CSD2008-00023 (CONSOLIDER) |
Research group: |