juntafi_19Financial source:
Junta de Andalucía
Code: P07-FQM-03298 (Proyecto de Excelencia)

Research head:
José Cotrino Bautista

Period:
1-02-2008 / 31-01-2011

Research group:
Agustín R. González-Elipe, Francisco Yubero Valencia

The project PlasNitro discusses the characterization of nitrogen plasmas in various technological related applications with techniques of deposition and functionalization of materials, reforming and processes of sterilization. Different procedures to measure properties of plasmas will go down to point, plasma that can be used in doping, deposition, functionalization and modification of materials and that contain nitrogen. In all cases by using techniques of diagnosis based in the detection of nitrogen species. Nitrogen is a usual component nowadays, only or in mixtures with other gases, in a lot of processes used in technology of plasma. Its experimental characterization and/or the modeling will allow getting fundamental properties from plasma (electron density, electron temperature, temperature of the gas, reactive species, etc.) and knowing the contribution to the homogenous (in phase plasma) and heterogeneous (in the surface-material interaction) reactions of the appropriate components of nitrogen. Numerical codes to get out the electron energy distribution function in plasma will become elaborate in the project. To this end the evaluation of the vibrational distribution of nitrogen will be necessary previously. This step implies taking into account multiple vibrational-vibrational processes, vibrational-translactional and vibrational-rotational processes. In the project we will be able to obtain models of fluid of the nitrogen plasma with the contributions of the most important species of the plasma. The theoretical calculations will be complemented with experimental measurements using electrostatic Langmuir’s probe, this will allow measuring the electron energy distribution function, as well as density and temperature of the electrons. The partial nitrogen pressure in each application and the plasma’s neutral components will be controlled by means of an analysis of residual gases. The kinetic modeling of the nitrogen plasma will enable the interpretation of measurements in the plasma out of the thermodynamic equilibrium and by using the Monte Carlo technique of simulation that enable the control of deposition/modification and the nano/microstructure of the materials. We will have, in this way, techniques that they will enable to control themselves and improving the procedures of work and the properties desired in the materials.

Nitrogen Plasmas for the superficial functionalization of materials
Tagged on: